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Abstract

This paper considers problems of distributed pa-
rameter estimation from data measurements on
solutions of diffusive partial differential equations
(PDEs). A nonlinear functional is minimized
to approximately recover the sought parameter
function (i.e., the model). This functional con-
sists of a data fitting term, involving the solution
of a finite volume or finite element discretiza-
tion of the forward differential equation, and a
Tikhonov-type regularization term, involving the
discretization of a mix of model derivatives.

We have developed methods for the resulting
constrained optimization problem which directly
address the discretized, strongly coupled PDE
system that defines a critical point of the La-
grangian. Such methods have been applied for
electromagnetic data inversion in 3D, both in fre-
quency and in time domains.

In practice the reconstruction process depends
crucially on additional, a priori information on
the model, which is introduced through the reg-
ularization term. We explore the use of the so-
called Huber’s norm for the recovery of piecewise
smooth model functions. Since our forward op-
erators are diffusive, care must be taken not to
conclude too much from discontinuity reconstruc-
tions. We supply examples.

1 Introduction

The success of many practical results for ill-posed
problems depends crucially on the circumstances
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Figure 1: A typical domain cross-section for a
geophysical application

in which they are derived. Let us therefore start
by describing in some detail the class of problems
under consideration here.

Several different applications give rise to a par-
tial differential equation (PDE) of the form

∇ · (σ∇u) = q. (1)

Here, the field u(x) satisfies the PDE plus bound-
ary conditions for given sources q = q(x) and a
conductivity function σ = σ(x). Applications
include DC resistivity, magnetotelluric inversion,
diffraction tomography, impedance tomography,
oil reservoir simulation and aquifer calibration
[15, 13, 6, 5]. Other applications of interest give
rise to the more involved Maxwell’s equations,
written for the time harmonic case as

∇× (µ−1∇× E)− ıω σ E = ıωs. (2)

See, e.g., [11, 7] and references therein. A typical
domain Ω in 3D on which such a PDE is defined
is depicted in Figure 1.

In a typical application we may have several
PDEs such as (1) or (2) corresponding, e.g., to
different frequencies and different sources and
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sinks. Whatever of these we have, we group them
as well as the given boundary conditions into a
unified notation

A(m)u = q

where the model m(x) is typically a function of
σ, e.g.,

σ(x) = em(x), x ∈ Ω.

The obtained boundary value PDE is dis-
cretized on a tensor product grid, not necessarily
uniform, using a finite volume technique [7, 1].
We assume the material properties to be constant
in each cell and call the resulting grid functions
u, q and m. If needed, they are ordered into vec-
tors. This yields our discretized problem

A(m)u = q. (3)

The forward problem is to find u satisfying (3)
given m (and q, which is always assumed given).
The inverse problem is to recover the model m,
given measurements b on the field u such that (3)
holds.

However, it is well-known that while the for-
ward problem is well-posed the inverse problem
is not. Indeed, in practice for the available, noisy
data typically there is no unique solution, i.e.,
there are many models m which yield a field u
which is close to b to within the noise level, and
moreover, such models m may vary widely.

Thus, we must add a priori information and
isolate noise effects. Then the problem becomes
to choose, from all possible model solutions, the
one closest to the a priori information. This reg-
ularization leads to the optimization problem

min
m,u

φ =
1
2
‖Qu− b‖2 + βR(m) (4)

subject to A(m)u− q = 0.

Here Q is a matrix consisting of unit rows which
projects to data locations, R(m) is a regulariza-
tion term, and β > 0 is the regularization param-
eter whose choice has been the subject of many
papers. Also, throughout this article the nota-
tion ‖ · ‖ refers to the l2 norm.

For the regularization term, consider a same-
grid discretization of

R(m) =
∫

Ω

ρ(|∇m|) + α̂(m−mref )2 (5)

where α̂ ≥ 0 is a small parameter and mref is a
given reference function. The selection of mref

can be crucial in geophysical exploration, but in
this article we set α̂ = 0 and concentrate on the
choice of the function ρ. The latter relates di-
rectly to the a priori information we have about
the smoothness of the model. A typical choice is
the weighted l2 norm, but we consider choices of
total variation and Huber’s function in §4.

Whichever choice is made for ρ, there is a very
large, nonlinear optimization problem to solve
in (4). This problem is significantly harder to
solve when total variation or Huber’s function
are used, and it also gets harder the smaller β is.
It is not unusual in our experience to solve prob-
lems of the form (4) for half a million unknowns,
so care must be taken to do this effectively: One
cannot simply assume the existence of a general
software package to do the job.

Fortunately, the matrices appearing in the nec-
essary conditions for (4) are all very sparse and
correspond to discretizations of elliptic PDEs, so
we exploit in §2 the special structure thus af-
forded. The details are taken from [8, 2]. An
example [9] inverting 3D electromagnetic data is
recalled in §3. This example uses a weighted l2
regularization.

Often, available a priori information about the
model suggests a piecewise smooth surface func-
tion. A method for reconstructing such surfaces
is developed in §4. This is currently a hot area
of research. However, for compact forward prob-
lems such as ours one should re-evaluate the po-
tential of using discontinuity reconstruction tech-
niques, because in practical situations there is
enough uncertainty in the data that arbitrary
shifts of discontinuity interfaces within the allow-
able set of model solutions cannot be precluded.
We demonstrate this by examples.

2 Solving the optimization
problem

The most obvious first step in order to solve (4),
taken by many, is to eliminate the field u using
the forward problem. Thus we obtain a much
smaller, although still large (and dense) uncon-
strained minimization problem

min
m

φ(m) =
1
2
‖QA(m)−1q − b‖2 + βR(m). (6)
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The unconstrained approach is to devise numeri-
cal methods for solving this unconstrained opti-
mization problem.

Newton and Gauss-Newton methods are well-
known. The Gauss-Newton iteration involves
positive definite linear systems of the form

Hred δm ≡ (JT J + βR′′) δm = −p (7)

where J = −QA−1G is the sensitivity matrix and
G = ∂A(m)u

∂m . The vector p and the matrices J
and R′′ are evaluated based on a current iterate
m and the next iterate is obtained as m ← m +
α̃ δm, for a suitable step size 0 < α̃ ≤ 1.

Whereas G is sparse, the sensitivity matrix J is
large and full for applications of the type consid-
ered here, so it is never evaluated or stored. To
solve (7) we use a Preconditioned Conjugate Gra-
dient method, i.e. the conjugate gradient method
for

M−1(JT J + βR′′)δm = −M−1p,

where M is a preconditioner, e.g. M = R′′.
This conjugate gradient method requires only
the evauation of matrix-vector products involv-
ing Hred.

Unfortunately, however, evaluating Hredv for a
given vector v is expensive! It involves evaluating
Jv and JT v. While multiplying a vector by G or
Q or their adjoints is fast, there is A−1 in J as
well. The forward and adjoint problems must be
solved for this purpose to a relatively high accu-
racy. In the large, sparse context the superiority
of the unconstrained approach may thus be chal-
lenged. Let us proceed to widen the scope.

Introducing the Lagrangian for the constrained
formulation (4),

L(m,u, λ) =
1
2
‖Qu−b‖2+βR(m)+λT (A(m)u−q),

where λ is the vector (or more generally, a grid
function like u) of Lagrange multipliers, the nec-
essary conditions for a minimum lead to the large
system of nonlinear equations

Lλ = Au− q = 0, (8a)
Lu = QT (Qu− b) + AT λ = 0, (8b)
Lm = βR′(m) + GT λ = 0. (8c)

All matrices appearing in (8) are sparse.
For the numerical solution of (8) consider using

a variant of Newton’s method (e.g. Lagrange-
Newton, SQP, Gauss-Newton; see for instance

[12]). A Gauss-Newton instance could read A 0 G
QT Q AT 0

0 GT βR′′

  δu
δλ
δm

 = −

Lλ

Lu

Lm

 . (9)

As for the unconstrained formulation (7), the
system (9) describes the equations to be solved
at each iteration in order to find the correction
vector for a current iterate (u, λ, m). We can dis-
tinguish the following tasks at each iteration: (i)
calculate the Gradients and Hessian; (ii) solve the
large, sparse Hessian system; and (iii) update the
iteration. Of these tasks the first is straightfor-
ward in the present context. The third is text-
book material (e.g. [12]) involving methods such
as damped Newton, trust region, directly updat-
ing λ, etc. We thus concentrate on the remaining,
second task.

There are two approaches here: the reduced
Hessian approach and the simultaneous, all-at-
once approach. In the first of these approaches
we eliminate δu from the first block row of (9)
(this involves solving the forward problem), then
δλ from the second block row of (9) (this involves
solving the adjoint problem), obtaining for δm a
reduced system of the form (7). Next, consider
the all-at-once approach, developed in [8, 2, 3, 4].

The rationale is simple: When the iterate for
the update direction is far from the solution to
the linear system, it is wasteful to eliminate some
variables accurately in terms of others! Thus,
one wants to balance accuracies inside the lin-
ear solver. This is where the unconstrained ap-
proach and the reduced Hessian approach de-
scribed above fall over.

We were thus led to consider methods where
δu, δλ and δm are eliminated simultaneously.
This approach is more natural also when consid-
ering the origin of the systems (8) and (9). These
are, after all, discretizations of systems of PDEs,
and the approach of eliminating some PDEs in
terms of others instead of solving the given sys-
tem as one is less usual. Unfortunately, however,
the matrix of (9) is no longer positive definite.
Moreover, β is typically small, so the problem
corresponds to a strongly coupled PDE system.

In [8] we proposed a preconditioned QMR
method for the symmetrized system (9). The
preconditioner consists of applying iterations to-
wards the solution of the reduced problem (7).
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The catch is that this no longer has to be per-
formed to a high accuracy. In the next section
we demonstrate the performance of this method.

In [2] we proposed a multigrid method for
the strongly coupled system (9). The resulting
method is very nice and fast, but we have ap-
plied it only for the problem (1). The staggered
discretization applied for the Maxwell equations
in §3 complicates the multigrid technique signifi-
cantly, so we chose the preconditioned QMR ap-
proach for the latter application.

3 Example 1: 3D electro-
magnetic data inversion

The inversion results reported in this section were
obtained using the weighted least squares norm
on ∇m for the regularization functional R, where

m(x) = lnσ(x).

This transformation automatically takes care of
the positivity constraint on σ, and it also reduces
the contrast in the conductivity, which is rea-
sonable for geophysical mining exploration ap-
plications and commensurate with the use of a
weighted l2 norm on |∇m| in R.

Maxwell’s equations for the time-harmonic
case are written as

∇× E + αµH = sH in Ω,

∇× H− σ̂E = sE in Ω,

~n×H = 0 on ∂Ω,

where σ̂ = σ+αε and α = −ıω. The permeability
µ(x) and permittivity ε(x) are assumed known
throughout. Typical parameter regimes in these
applications satisfy 0 ≤ ε � 1 and exclude high
frequencies ω.

Appropriate discretization and solution tech-
niques for this forward model, including bound-
ary conditions, have been described in [7, 9].
They involve a finite volume discretization ap-
plied on a staggered grid. Note that the forward
problem is linear, while the inverse problem is
not.

In a multiple source/frequency experiment, a
linear system arises from such a discretization
for each pair of frequency and source. The for-
ward problem (3) then consists of the collection

β = 100 misfit = 0.06
n-it KKT-it infeas rel-grad
1 4 3e− 2 2e-1
2 4 2e− 4 3e-2
3 3 2e− 6 5e-4

β = 1e0 misfit = 0.03
n-it KKT-it infeas rel-grad
1 8 1e− 6 3e-3
2 6 8e− 7 9e-4

Table 1: Inverting electromagnetic data in the
frequency domain.

of all these subsystems. Obvious parallelism can
be exploited since they depend on each other only
through the model.

In [9] a data inversion experiment is described.
It involves a transmitter and receiver geometry
from an actual CSAMT field survey, although the
conductivity model is synthesized. The transmit-
ter is a 1km grounded wire a few kilometers away
from survey area – this is dealt with using a spe-
cial procedure. The data is measured on 5 field
components at frequencies 16, 64 and 512 Hz
at 28 stations spaced 50m apart on each of 11
lines with linespacing of 100m. This gives a to-
tal of 308 data locations and 4620 data values.
The “true model” has two conductive, boxy bod-
ies and one resistive box. This is used to gener-
ate “true data”, which are then contaminated by
Gaussian noise, 2% in amplitude and 2 degrees
in phase. The 3350m × 3000m × 2000m volume
is discretized into 64× 50× 30 = 96, 000 cells.

A simple continuation process in β is applied,
where we start with a large β and decrease it until
the data is deemed to be fitted sufficiently well.
Results are accummulated in Table 1. The “mis-
fit” reported here and later on is ‖Qu − b‖/‖b‖,
i.e., the relative l2 norm of the predicted minus
the observed data at the end of the continua-
tion step. Also, “n-it” is the nonlinear itera-
tion counter, “KKT-it” is the number of precon-
ditioned QMR iterations required for each non-
linear iteration, “infeas”= ‖Au − q‖/‖q‖, and
“rel-grad” is the relative gradient error in φ of
(4). Note that an inexact Newton-type method
is used. The overall number of KKT iterations
is rather reasonable here, and not one forward
problem is solved accurately before the end of
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Figure 2: Three slices through the recovered 3D
conductivity model obtained by inverting syn-
thetic CSAMT data.

the entire continuation step. The reconstructed
model is shown in Figure 2.

We have also inverted 3D electromagnetic data
in time; see [9] for details and a full example.

4 Discontinuous solutions
and “Huber’s norm”

Recall that our argument leading to the mini-
mization problem (4) has been that we intro-
duce a priori information about smoothness of
the model this way. But in many cases, including
the examples of the previous section, our a priori
knowledge is that the model probably contains
jump discontinuities! So, in the regularization
term

R(m) =
[∫

Ω

ρ(|∇m|) + α̂(m−mref )2
]

h

(where the subscript h implies that the integral
has been discretized) we want to limit the effect
of penalty through a jump discontinuity in m, as
this should not be penalized for non-smoothness.

Consider choosing a seminorm in R(m) that
will tolerate discontinuities [14, 17]. We have the
multiresolution view of exploring functions on a
given grid as corresponding to a discretization of
some limit process.

Note that for |∇m| → ∞,
∫
|∇m| is integrable

but
∫
|∇m|2 is not. This suggests inadequacy

of the least squares norm in the presence of dis-
continuities. On the other hand, for |∇m| → 0,∫
|∇m| yields problems when differentiating it to

obtain necessary conditions, while
∫
|∇m|2 does

not.

These observations suggest to combine the two,
which yields the so-called Huber’s norm [10, 14]

ρ(τ) =

{
τ, τ ≥ γ,

τ2/(2γ) + γ/2, τ < γ
(10)

R′(m) ← ∇ ·
(

min{ 1
γ

,
1
|∇m|

} ∇m
)

.

We have preferred to consider (10) over regu-
larizing total variation, even though it’s rougher
and harder to analyze, because the parameter γ
appears more naturally. Indeed, γ is the maxi-
mal size of a local change in |∇m| which is still
interpreted as a smooth change in m on the scale
of the current grid. This quantity may depend
on the application.

We have found the following automatic choice
to be particularly useful in practice:

γ =
h

|Ω|h

[∫
Ω

|∇m|
]

h

. (11)

Thus, γ depends on the solution and is adjusted
through the iteration in an obvious fashion. Oth-
ers choose this parameter using an expression
from robust statistics involving medians of |∇m|:
see [14] and references therein. Also, in the im-
age processing literature one often chooses to
penalize even less through discontinuities than
when using Huber’s norm (e.g. using a Gaus-
sian function or a Tukey biweight). However, this
leads to non-convex functionals and local min-
ima, which seems excessive in our more complex
context where the forward problem is not simply
the identity.

To solve (7) or (9) we apply the method of
lagged diffusivity, whereby in the current iterate
we set

R′′δm ≈ ∇ ·
(

min{ 1
γ

,
1
|∇m|

} ∇δm
)

, (12)

and solve the resulting weighted least squares
problem. This iteratively reweighted least
squares (IRLS) algorithm has been analyzed for
a fixed γ in the image denoising context to
show global convergence; see [17] and references
therein.

Difficulties do arise, of course, when the for-
ward model is (1) or (2), where even the l2 reg-
ularization functional can be testy. The corre-
sponding algebraic equations when using (12) are
harder to solve than for the l2 case.
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Recovering discontinuous surfaces
from diffusive forward operators?

We have obtained good results using the tech-
niques outlined above for applications in denois-
ing and in SPECT tomography. However, in
the context of the present paper one wonders,
is there really enough accurate data in applica-
tions to allow an honest identification of discon-
tinuities using our diffusive forward operators?!
For instance, in Example 1 the recovered field
approximates the unpolluted data well, whereas
the quality of the reconstructed model is much
poorer [9]. It would appear that many, rather
different models for m could fit the data within
the noise tolerance. Does it then make sense at
all to seek a model with pinpointed discontinu-
ities?

The answer depends on the quality of the a pri-
ori information available. Just fitting the data to
within a hypothetical noise level, however, pro-
vides insufficient information to determine dis-
continuities responsibly, as the following exam-
ples demonstrate.

Example 2

This example is in 2D, and Ω = [−1, 1]2. To
allow maximum chance for recovery of disconti-
nuities we consider the differential operator (1)
in the form

∇ · (m−1∇u) = q,

i.e. without the exponential transformation from
σ to m, with natural boundary conditions, and
assume (unrealistically) that data on u are avail-
able everywhere on a given grid.

The right hand side is chosen with source and
sink,

q = exp(−10((x + 0.6)2 + (y + 0.6)2))
− exp(−10((x− 0.6)2 + (y − 0.6)2)),

and the “true model”, depicted in Figure 3, con-
tains discontinuities. We use this true model to
generate a field on a 129× 129 cell-centered grid
and contaminate this with 1% white noise to yield
the “observed data”, b.

A standard finite volume discretization is ap-
plied to the forward problem (with harmonic av-
eraging for m−1). For the optimization problem
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Figure 3: Contour plot of the “true model” for
Example 2.
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Figure 4: Recovered model using l2 regulariza-
tion of |∇m| with β = 3 × 10−6 for Example 2.

we use a conjugate gradient solver with a multi-
grid preconditioner [16] which employs operator-
induced, node-based prolongation.

Figure 4 displays the recovered model using l2
regularization with β = 3 × 10−6. The resulting
misfit is 1.50 × 10−2. Reducing β to 10−6 pro-
duces a model where noise-related artifacts are
apparent, so β should not be reduced further.

In comparison, our result using Huber’s norm
with β = 10−5, which yields a final γ = 4.6 and
an almost ideal misfit 1.01×10−2, is displayed in
Figure 5.

Like for Example 1, the reconstructed fields,
u, in all of these inversions are far smoother than
the observed data and closer to the noiseless data
(i.e. the exact discrete field).

The good news when comparing these figures is
that the more careful Huber norm does yield bet-
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Figure 5: Recovered model using Huber’s norm
with β = 10−5 for Example 2.

ter results, both in terms of misfit and in terms
of closeness to the “true model”.

On the other hand, the difference between a
misfit of 1% and 1.5% is much too fine to define
a cutting edge between a “good” and a “bad”
model in realistic situations, where we do not
know a “true model” either. In fact, in most
practical cases the noise level is unknown and one
uses other statistical techniques such as GCV [17]
to evaluate it. Furthermore, the data are scarcely
given everywhere - see the realistic Example 1.

Of course, it can be said that, using the a pri-
ori information that the model contains discon-
tinuities, we generate one such model which fits
the data well enough and that is that. However,
there are other models with discontinuities which
fit the data well! For the present example we
took the recovered model of Figure 4 and ap-
plied a simple thresholding procedure, whereby
the range [mmin,mmax] was divided into 5 equal
subintervals, and then all values of m within
each such subinterval were replaced by the mid-
point value. The result is displayed in Figure 6.
Clearly, the resulting model is rather far from the
“true model” of Figure 3, and yet the misfit is a
respectable 2.2 × 10−2. The point of the above
thresholding experiment is that in more realistic
examples we may not know whether our recov-
ered discontinuities are, even approximately, in
the right place.

Example 3

We use the same setting as in Example 2 with
the following exceptions: (i) The grid size is a
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Figure 6: The model of Figure 4 replaced by
a piecewise constant approximation with 5 con-
stant values.

coarser 33 × 33; (ii) an exact solver is used for
the linear equations (7); and most importantly,
(iii) the “true model” only has two values and is
given by the function

m(x, y) =


10 −.2 < x, y < .2,

10 x2 + y2 > .82,

1 otherwise
.

Thus, we have a ring of height 1 with a circu-
lar outer boundary and a square inner boundary
immersed in a background of height 10. How-
ever, unlike with a typical level set method, we do
not assume such additional, specific knowledge of
this particular model. The result using Huber’s
norm with β = 10−6 and γ = 2.2 is displayed
in Figure 7. It is rather far from the “true” ring
model (in particular, the cross diagonal symme-
try is strongly violated), even though the misfit is
an almost ideal 1.02× 10−2. Repeating the same
experiment with a smaller γ = .34 yields a misfit
of 8.7×10−3, but the quality of the reconstructed
model is not improved.

From these two examples it is clear that sim-
ply trusting the reconstruction because the misfit
is small cannot be advocated. (Considering the
maximum norm of the predicted minus the ob-
served fields proves insufficient as well.) It can
then be argued that displaying a smooth blob,
such as when using least squares regularization
(Figures 2 and 4) is less committing than display-
ing a discontinuous solution (especially with only
a few constant values), and as such is more com-
mensurate with the actual information at hand.
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Figure 7: The recovered model for Example 3
using Huber’s norm with β = 10−6.
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